
Міжнародна науково-технічна конференція

«ІНФОРМАЦІЙНО-КОМУНІКАЦІЙНІ ТЕХНОЛОГІЇ ТА КІБЕРБЕЗПЕКА (IКTK-2024))»

Харків, Україна

13 – 14 листопада 2024 р.
~ 148 ~ IKTK-2024

SOFTWARE DEFECT MANAGEMENT PROCESS
RATING

Kadatskaja О., Ghanem Karim

V.V. Popovsky Dep.Engineering Infocommunication HNURE,
Ukraine

E-mail: olha.kadatska@nure.ua,

Abstract

Defects are destructive at all stages of software development, need use the defect management process keep their

reduced to a minimum and to deal with potential defects. Identifying the root causes of defects requires a systematic ap-

proach to analyzing the problem. To effectively control and deal with defects, it is necessary to manage their life cycle

properly. There are different approaches to root cause analysis each of these methods has its own advantages and disad-

vantages, and the choice of method depends on the type of problem and the resources available.

Defect/bug life cycle representant of the various states of a defect in which it resides from the initial to
the final stage of its existence and can be customized to the processes of a specific project. The structure of
software diagnostics occurs at two main levels - analysis of source and binary (executable) codes, each level of
development has its own advantages and achievements. However, defects generally result in software develop-
ers being unable to take into account all aspects of the program's executable code that arise from the use of op-

timizing compilers and binary translators.
Software defects you be divided into vulnerabilities (critical errors) leading to malfunction, denial of ser-

vice, changes in the security of information resources and errors (non-critical) that only affect the quality of the
software system (for example the program uses more memory to operate than necessary due to memory leaks
when working with it). The search for critical errors is of greatest interest, however, non-critical errors also af-
fect the process of software operation, therefore modern diagnostic systems are aimed at identifying both types
of defects.

The current generally accepted classification of defects by type is presented in the Common Weakness
Enumeration database, the list of registered defects is in the Common Vulnerabilities and Exposures database
of the MITER organization [1].

Defect management occurs systematically during the process of identifying and eliminating errors. The
defect management cycle can be dividing into the following stages: defect discovery, defect categorization, de-
fect resolution by developers, review by testers, defect closure, defect reporting at the end of the project.
Moreover, defects have different statuses, namely: new - if a new defect is registered and published for the first
time; assigned-publishing a bug by a tester, the tester's manager approves the bug and transfers it to the devel-

opment team. Open status - the developer begins analysis and works to fix the bug; fixed - the developer made
the necessary change to the code and checked it; pending retest - once the defect is fixed, the developer pro-
vides the specific code to the tester to retest the code. Retest status- at this stage, the tester retests the code to
check whether the developer has fixed the defect, verified - the tester retests the bug after it has been fixed by
the developer. Reopened status, if the bug persists even after the developer has fixed the bug. And again, the
bug goes through its life cycle. Closed - if the bug no longer exists, duplicate - if the defect is repeated twice or
the defect corresponds to the same error concept. Statuses rejected - if the developer believes that the defect is

not such, deferred - if the current bug is not a priority and is expected to be fixed in the next release, not a bug -
if it does not affect the functionality of the application.

Critical defects pose a security risk to users, the defect must be corrected immediately otherwise it may
lead to large losses for the software. Testing only reduces the likelihood of defects found in the software, but
does not guarantee their absence, exhaustive testing is impossible. Complete testing using all combinations of
input data, results, and preconditions is physical-ly impossible.

mailto:kadatska@nure.ua

Інформаційні системи та технології

Харків, Україна

13 – 14 листопада 2024 р.
~ 149 ~ IKTK-2024

Most of the defects are found in a limited number of modules. The pesticide paradox emerges if you re-
peat the same test cases over and over again, at some point this test suite will stop identifying new defects.
Testing is done differently depending on the context. The absence of defects found during testing does not al-
ways mean the product is ready for re-lease. The system must be user-friendly to use and meet his expectations
and needs - quality assurance and quality control - analysis of test results and the quality of new versions of a
released product.

Following management tools should be used to evaluate software defect management. Checklist

in testing is management tool based on the principles of “error protection”; it is a sheet with a list of necessary
checks and notes on their implementation. To compile a checklist, you first need to think through defect-
dangerous areas. Universal checklists have the same wording, they are prepared for checking identical (simi-
lar) objects without reference to any specifics of a particular software. Specialize checklists are developed for
the software under test, tied to the unique requirements/features of this software. Software for creating check-
lists - Testpad, Checklists. expert, Notion, Evernote, etc.

Test case is a step-by-step description of the actions that need to be performed to test any software func-

tion; this is an algorithm that a tester must follow (model user behavior) in order to check the functionality of a
certain part of the code. As a rule, test cases are written for repeated testing basic functions, the functionality of
which must be verified every time the software is updated, for example, the authorization function.

To localize defects, it is necessary to identify the causes of the defect, analyze the possibility of the influ-
ence of the found defect on other areas, find deviations from the expected result, and explore the environment -
reproduce the bug in different operating systems (Android, Windows, etc.) and browsers (Google Chrome, In-
ternet Explorer, etc.).Also necessary check the bug on different devices, check it in different software versions

and analyze system resources. Evidence of bug reproduction should be recorded using logs, screenshots, or
screen recordings.

All detected defects must be filed as bug reports for all project specialists to reproduce the detected de-
fect and understand its criticality.

Identifying the root causes of defects requires a systematic approach to analyzing the problem. There are
different approaches to root cause analysis such as 5 whys, Ishikawa diagrams, Pareto dicars. Each of these
methods has its own advantages and disadvantages, and the choice of method depends on the type of problem
and the resources available. 5 whys simple but effective tool for identifying the root cause of a problem in-

volves asking “why” five times to get to the root cause of the defect. Ishikawa diagrams are a visual tool for
identifying the causes of defects, helping to identify primary and secondary causes and how they relate to each
other. Pareto dicars are useful for identifying the most significant causes of defects, helping to prioritize the
causes and focus on the most important ones.

Once the defects are accepted and classified, the following steps must be followed to correct them. The
programmer eliminates the causes of the defects to change the status to meet the requirements. The developer
side implements a schedule for eliminating these defects depending on their priority. The test manager moni-

tors the progress of the bug fixes based on the schedule and generates a bug fix report from the developers
when the defects are fixed. After the development team has fixed the defect and re-ported it, the testing team
verifies that all reported defects have actually been fixed and their status is changed to closed. If the defect is
not resolved, a notification is sent to the development department to check the defect again, and then a report is
generated. The quality of the test is assessed by the following parameters - defect reject ratio (DRR) and defect
leakage ratio (DLR) and the lower the DRR and DLR value, the better the quality of testing.

Conclusion

Analyzing software defect management process allows us to detecting errors with a well-planned and
controlled defect life cycle which shown of how developers wrote the code and whether testers did their job

correctly. Based on analysis of tools we chouses corresponding with defect management cycle and catego-
rization defects status. Is proposed strategy for preventing software security issues and ways must be followed
to correct defects.

References

1. Protecting Against Malicious Use of Remote Monitoring and Management Software..

URL:https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-025a (02, 2023)

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-025a

